Precision steel shafts and shaft end machining

Precision steel shafts

Overview

Dimensions

Shaft	Part numbers for solid shafts								
$\varnothing d$	Heat-treated Cf53		Max. usable	X46Cr13		Max. usable	X90CrMoV18		Max. usable
(mm)	h61)	h71)	Length (mm)	h61)	h71)	Length (mm)	h61)	h71)	Length (mm)
3	R1000 00300	-	400	-	-		R1000 00320	-	400
4	-	-	-	R1000 00430	R1000 00431	3,450	-	-	-
5	R1000 00500	R1000 00501	3,900	R1000 00530	R1000 00531	3,450	-	-	-
6	R1000 00600	R1000 00601	5,650	R1000 00630	R1000 00631	3,450	-	-	-
8	R1000 00800	R1000 00801	5,900	R1000 00830	R1000 00831	5,900	-	-	-
10	R1000 01000	R1000 01001	5,900	R1000 01030	R1000 01031	3,450	-	-	-
12	R1000 01200	R1000 01201	5,900	R1000 01230	R1000 01231	5,900	R1000 01220	R1000 01221	5,900
14	R1000 01400	R1000 01401	5,900	R1000 01430	R1000 01431	5,900	-	-	-
15	R1000 01500	R1000 01501	5,900	-	-	-	-	-	-
16	R1000 01600	R1000 01601	5,900	R1000 01630	R1000 01631	5,900	R1000 01620	R1000 01621	5,900
18	R1000 01800	R1000 01801	5,900	-	-	-	-	-	-
20	R1000 02000	R1000 02001	5,900	R1000 02030	R1000 02031	5,900	R1000 02020	R1000 02021	5,900
22	R1000 02200	R1000 02201	5,900	-	-	-	-	-	-
24	R1000 02400	R1000 02401	5,900	-	-	-	-	-	-
25	R1000 02500	R1000 02501	5,900	R1000 02530	R1000 02531	5,900	R1000 02520	R1000 02521	5,900
30	R1000 03000	R1000 03001	5,900	R1000 03030	R1000 03031	5,900	R1000 03020	R1000 03021	5,900
32	R1000 03200	R1000 03201	5,900	-	-	-	-	-	-
35	R1000 03500	R1000 03501	5,900	-	-	-	-	-	-
38	R1000 03800	R1000 03801	5,900	-	-	-	-	-	-
40	R1000 04000	R1000 04001	5,900	R1000 04030	R1000 04031	5,900	R1000 04020	R1000 04021	5,900
45	R1000 04500	R1000 04501	5,900	-	-	-	-	-	-
50	R1000 05000	R1000 05001	5,900	R1000 05030	R1000 05031	5,900	R1000 05020	R1000 05021	5,900
55	R1000 05500	R1000 05501	5,900	-	-	-	-	-	-
60	R1000 06000	R1000 06001	5,900	R1000 06030	R1000 06031	5,900	R1000 06020	R1000 06021	5,900
70	R1000 07000	R1000 07001	5,900	-	-	-	-	-	-
80	R1000 08000	R1000 08001	5,900	R1000 08030	R1000 08031	5,900	R1000 08020	R1000 08021	5,900
100	R1000 10000	R1000 10001	5,900	-	-	-	-	-	-
110	R1000 11000	R1000 11001	5,900	-	-	-	-	-	-

1) Other tolerances upon request

Shaft \varnothing d (mm)	Part numbers for solid shafts Hard chrome-plated Cf53				Part numbers for hollow shafts				lated Cf53
	h6	Max. usable Length (mm)	h7	Max. usable Length (mm)	$\begin{aligned} & \text { size } \varnothing 8, \varnothing 10, \\ & \text { h6 } \end{aligned}$	Ø 16: 100Cr6 h7	Max. usable Length	h7	Max. usable Length
3	-	-	-	-	-	-	-	-	-
4	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-	-
8	-	-	-	-	R1001 00810	-	1,000	-	-
10	-	-	-	-	R1001 01010	-	1,000	-	-
12	R1000 01260	5,350	R1000 01261	5,350	R1001 01210	R1001 01211	5,900	-	-
14	R1000 01460	5,350	R1000 01461	5,350	-	-	-	-	-
15	-	-	-	-	-	-	-	-	-
16	R1000 01660	6,350	R1000 01661	6,350	R1001 01610	R1001 01611	2,000	-	-
18	-	-	-	-	-	-	-	-	-
20	R1000 02060	6,450	R1000 02061	6,450	R1001 02010	R1001 02011	5,900	-	-
22	-	-	-	-	-	-	-	-	-
24	-	-	-	-	-	-	-	-	-
25	R1000 02560	6,850	R1000 02561	6,850	R1001 02510	R1001 02511	5,900	R1001 02541	5,900
30	R1000 03060	6,850	R1000 03061	6,850	R1001 03010	R1001 03011	5,900	R1001 03041	5,900
32	-	-	-	-	-	-	-	-	-
35	-	-	-	-	-	-	-	-	-
38	-	-	-	-	-	-	-	-	-
40	R1000 04060	6,850	R1000 04061	6,850	R1001 04010	R1001 04011	5,900	R1001 04041	5,900
45	-	-	-	-	-	-	-	-	-
50	R1000 05060	6,850	R1000 05061	6,850	R1001 05010	R1001 05011	5,900	R1001 05041	5,900
55	-	-	-	-	-	-	-	-	-
60	R1000 06060	6,850	R1000 06061	6,850	R1001 06010	R1001 06011	5,900	R1001 06041	5,900
70	-	-	-	-	-	-	-	-	-
80	R1000 08060	6,850	R1000 08061	6,850	R1001 08010	R1001 08011	5,900	R1001 08041	5,900
100	-	-	-	-	-	-	-	-	-
110	-	-	-	-	-	-	-	-	-

Ordering information

Heat-treated solid steel shafts

As part of a linear guide, the role of the shaft places strict requirements on the materials used.
We offer the ideal shaft material for any diameter range.
Extremely consistent surface hardness and hardness depth combine with outstanding purity, consistent structure and balanced grading for extraordinarily long service life under rolling loads.

$$
\begin{aligned}
& \text { Available diameters (mm) } \\
& \begin{array}{r}
3,5,6,8,10,12,14,15,16,18,20,22, \\
24,25,30,32,35,38,40,45,50,55,60, \\
70,80,100,110 \\
\hline
\end{array}
\end{aligned}
$$

$\boldsymbol{\varnothing}$ d (mm)	Lengths (m)
$\mathbf{3}$	
5 and 6	
8 and higher	

Solid shafts with shaft diameters 20 mm to 8 m in length available upon request.
Sections combine for longer overall lengths.
Linear bushings roll over seams with ease.

Material number	
h6 tolerance	R1000 xxx 00
h7 tolerance	R1000 $x x x 01$

Ordering example
Solid shaft, $\varnothing=25$, h7, heat-treated steel, 460 mm long
Material number:
R1000 025 01, 460 mm

ISO 683-17/EN 10088 stainless steel solid shafts

The right choice for applications where corrosion resistance and cleanliness are critical, e.g., in the food industry, semiconductor production and medical equipment. X 90 CrMoV 18 is more resistant to lactic acid than X 46 Cr 13.

Materials	Available diameters (mm)
X 46 Cr13	$4,5,6,8,10,12,14,16,20,25,30,40,50,60,80$
X 90 CrMoV 18	$3,12,16,20,25,30,40,50,60,80$

$\boldsymbol{\sigma}$ d (mm)	Lengths (m)
3	
$4-10$	0.4
$12-80$	3.6

Materials	Hardness X 46 Cr 13
X 90 CrMoV 18	Min. 55 HRC

Material number for X 46 Cr 13

h6 tolerance	R1000 0xx 30
h7 tolerance	R1000 0xx 31

Material number for $\mathbf{X} 90 \mathrm{CrMoV} 18$	
h6 tolerance	R1000 0xx 20
h7 tolerance	R1000 0xx 21

$\mathrm{xx}=$ diameter in mm

Sections combine for longer overall lengths.
Linear bushings roll over seams with ease.

Ordering example:

Solid shaft, $\varnothing=16$, h6, stainless steel X $46 \mathrm{Cr} 13,350 \mathrm{~mm}$ long Material number: R1000 016 30, 350 mm

Materials

Heat-treated steel	Code	Material no.
	Cf53	1.1213
Hollow shaft	C60	1.0601
ISO 683-17/EN 10088 stainless steel	X 46 Cr 13	1.4034
	X 90 CrMoV 18	1.4112

Solid shafts, hard chrome-plated

Hollow shafts, hard chrome-plated

Optimal shaft surface corrosion protection on outer diameter.

Available diameters (mm)

$$
12,14,16,20,25,30,40,50,60,80
$$

$\boldsymbol{\sigma} \mathrm{d}(\mathrm{mm})$	Lengths (m)
$\mathbf{1 2 , 1 4}$	5.35
$\mathbf{1 6}$	6.35
$\mathbf{2 0 - 8 0}$	6.85

Sections combine for longer overall lengths. Linear bushings roll over seams with ease.

Materials	Hardness
Cf53, C60	Min. 60 HRC (about 700 HV)
Chrome plating (about 10μ m thick)	About $1,000 \mathrm{HV}$

Material number	
h6 tolerance	R1000 0xx 60
h7 tolerance	R1000 0xx 61

$\mathrm{xx}=$ diameter in mm
Ordering example:
Solid shaft, $\varnothing=30$, h7, hard chrome-plated, 480 mm long
Material number:

R1000 030 61, 480 mm
Hollow shafts allow for electrical wiring, or liquid or gaseous media. Hollow shafts are also often used to save weight. The material is seamlessly rolled. The inner diameters are unmachined.

Available diameters (mm) Outer	
$\mathbf{8}$	Inner (approx.)

$\boldsymbol{\sigma} \mathbf{~ d m m})$	Max. lengths (m)
$\mathbf{8 , 1 0}$	1.0
$\mathbf{1 6}$	2.0
$\mathbf{1 2}$ and $\mathbf{2 0 - 8 0}$	6.1

Materials	Hardness
C60	Min. 60 HRC

$\mathrm{xxx}=$ outer diameter in mm

Ordering example:

Hollow shaft, $\varnothing=80$, h7, 3,600 mm long Material number:
R1001 080 11, 3600 mm

Hollow shafts are hard chrome-plated on the outer diameter. Max. length: 6.1 m

| Available diameters (mm)
 Outer | | | Inner (approx.) |
| ---: | ---: | :---: | :---: |$\quad 1$| | |
| ---: | ---: |
| $\mathbf{2 5}$ | 14.0 |
| $\mathbf{3 0}$ | 26.0 |
| $\mathbf{4 0}$ | 29.6 |
| $\mathbf{5 0}$ | 36.5 |
| $\mathbf{6 0}$ | 57.4 |
| $\mathbf{8 0}$ | |

Material number

h7 tolerance
R1001 0xx 41
$\mathrm{xx}=$ outer diameter in mm

Ordering example:

Hollow shaft, $\varnothing=40$, h7, hard chrome-plated, 2000 mm long Material number:
R1001 040 41, 2000 mm

Technical data

Dimensional accuracy and tolerance zones

The diameters of the precision steel shafts come in h6 and h7 tolerance zones. The adjacent table shows information on dimensional accuracy. The diameter tolerance of annealed shaft cross-sections vary slightly from the specified tolerance zone.

Straightness based on ISO 13012

The measuring points are evenly distributed between the support points and the shaft sections protruding past them. More supports are used accordingly for long, thin shafts. Straightness is half of the gauge measurement when turning the shaft 360°.

Roundness

The drawing shows the roundness of a raw shaft compared to a precision steel shaft.

Nominal size ranges d	(mm)	Over Up to	1 3	6	6 10	10 18	18 30	30 50	50 80	80 120
Diameter tolerance	($\mu \mathrm{m}$)	h6	0	0	0	0	0	0	0	0
			-6	-8	-9	-11	-13	-16	-19	-22
		h7	0	0	0	0	0	0	0	0
			-10	-12	-15	-18	-21	-25	-30	-35
Roundness tolerance t_{1}	($\mu \mathrm{m}$)	h6	3	4	4	5	6	7	8	10
		h7	4	5	6	8	9	11	13	15
Cylindricity $\mathrm{t}_{2}{ }^{\text {1) }}$	($\mu \mathrm{m}$)	h6	4	5	6	8	9	11	13	15
		h7	6	8	9	11	13	16	19	22
Straightness $\mathrm{t}_{3}{ }^{\text {2 }}$	($\mu \mathrm{m} / \mathrm{m}$)		150	150	120	100	100	100	100	100
Surface roughness (Ra)	($\mu \mathrm{m}$)		0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32

1) Differences in diameter
2) The smallest possible value is $40 \mu \mathrm{~m}$ for lengths under 1 m . Straightness is measured based on ISO 13012.

Shaft hardness

The outer zone of the shaft is induc-tion-hardened. Depending on the shaft diameter, the depth of hardness ranges from 0.4 to 2.4 mm . Linear and transverse surface hardness and depth of hardness are highly consistent. This ensures high dimensional consistency and long service life.
The adjacent figure shows the cross-section and longitudinal section of a hardened and polished precision steel shaft. The hardened surface zone is made visible by caustic etching.

Materials	Hardness
Cf53, C60	HRC 60
X 46 Cr13	HRC 54
X 90 CrMoV 18	HRC 55

Precision steel shafts

Technical data

Mill-cut lengths

Shaft design	Diameter		Mill-cut length	Ends not true to size ${ }^{\text {1) }}$

1) Regarding geometry and hardness
2) Solid shafts with shaft diameters 20 mm to 8 m in length available upon request.

We also provide interconnectable steel shafts when more than the mill-cut length is needed. One shaft then comes with a spigot, the next with a matching recess (see figure). The interconnected shaft must be supported throughout or at intervals, though generally at the seas (see Section "Shaft support rails").
The shafts must be under axial tension when fastening the shaft support rails so no gaps form at the seams. Linear bushings roll over seams with ease.

Chamfering

When used as round guides for linear bushings, the ends of steel shafts must be chamfered so the ball retainers/wiper seals are not damaged when the linear bushings are pressed onto the shafts. The figure and table show the chamfering dimensions.
Linear bushings with wiper seals cannot be pressed over sharp edges on the shaft (e.g., retaining ring grooves) since the
 sealing lips will be damaged.

Shaft Ø d	(mm)	3	4	5	8	10	12	14	16	20	25	30	40	50	$\mathbf{6 0}$	80
Length of chamfers L_{1}	$(\mathrm{~mm})$	1	1	1.5	1.5	1.5	2	2	2	2	2	2	3	3	3	3

Hardened and polished steel shafts are available in mill-cut lengths. These can be cut to size and machined to include:

- Spigots
- Radial and axial holes
- Female and male threads
- Grooves
- Counterbores
- Other machining

Unmachined, cut-to-size shafts come chamfered for accident prevention when not otherwise ordered.

Annealing machined sections

Length tolerance for cut-to-size shafts

Annealing may be necessary when machining shafts due to the hardened outer zone (minor change in size possible).

Dimensions (mm) Length	Tolerance
up to 400	± 0.5
over 400 up to 1,000	± 0.8
over 1,000 up to 2,000	± 1.2
over 2,000 up to 4,000	± 2.0
over 4,000 up to 6,000	± 3.0
over 6,000 up to 8,000	± 3.5

Steel shafts with smaller length tolerances are also available at additional cost.

Concentric and axial spigot runout

A review in accordance with a specified principle will be performed upon request. Values xxx <0.02 upon request.

Technical data

Shaft deflection

When steel shafts are used as guides for linear bushings, any shaft deflection that occurs due to load must remain within certain tolerances. Otherwise function and service life will be impacted.1)
In order to make it easier to calculate warping, we have listed the most frequent load conditions with their corresponding deflection equations.
The equations for calculating any shaft inclination in the linear bushing $(\tan \alpha)$ can also be found in this table.

| Case |
| :--- | :--- | :--- | :--- |
| no. |
| 2 |

F	= Load	(N)	1	$=$ Planar moment of inertia	(mm ${ }^{4}$
a	= Distance	(mm)	f_{1} to f_{4}	$=$ Deflection at	(mm)
b	= Distance	(mm)		point of force application	
L	= Shaft length	(mm)	$\mathrm{f}_{\mathrm{m} 1}$ to $\mathrm{f}_{\mathrm{m} 5}$	= Max. deflection	(mm)
E	$=$ Young's modulus	($\mathrm{N} / \mathrm{mm}^{2}$)	α	$=$ Shaft inclination in the linear bushing	$\left({ }^{\circ}\right.$

The table includes the values for the maximum acceptable shaft inclination $\left(\tan \alpha_{\text {max }}\right)$ when using standard linear bushings.
When $\tan \alpha=\tan \alpha_{\text {max }}$, the acceptable static load is about $0.4 \mathrm{C}_{0}$.

ExI values and weights for steel shafts

Shaft	$\tan \alpha$	α	α		α	
$\boldsymbol{\sigma}$ d (mm)			$\left(10^{\left.-3^{\circ}\right)}\right.$	$\left(^{\circ}\right)$	(min).	
(sec)						
5	12.3	70.5	0.0705	4	14	
8	10.0	57.3	0.0573	3	26	
12	10.1	57.9	0.0579	3	28	
16	8.5	48.7	0.0487	2	55	
20	8.5	48.7	0.0487	2	55	
25	7.2	41.3	0.0413	2	29	
30	6.4	36.7	0.0367	2	12	
40	7.3	41.8	0.0418	2	30	
50	6.3	36.1	0.0361	2	10	
60	5.7	32.7	0.0327	1	58	
80	5.7	32.7	0.0327	1	58	

Solid shafts $\boldsymbol{\theta} \mathbf{~ d}$ (mm)	E x I $(\mathrm{N} \mathrm{x} \mathrm{mm})$	Weight
$\mathbf{3}$	8.35×10^{5}	$\mathrm{kg} / \mathrm{m})$
$\mathbf{4}$	2.64×10^{6}	0.06
$\mathbf{5}$	6.44×10^{6}	0.10
$\mathbf{8}$	4.22×10^{7}	0.15
$\mathbf{1 0}$	1.03×10^{8}	0.39
$\mathbf{1 2}$	2.14×10^{8}	0.61
$\mathbf{1 4}$	3.96×10^{8}	0.88
$\mathbf{1 6}$	6.76×10^{8}	1.20
$\mathbf{2 0}$	1.65×10^{9}	1.57
$\mathbf{2 5}$	4.03×10^{9}	2.45
$\mathbf{3 0}$	8.35×10^{9}	3.83
$\mathbf{4 0}$	2.64×10^{10}	5.51
$\mathbf{5 0}$	6.44×10^{10}	9.80
$\mathbf{6 0}$	1.34×10^{11}	15.32
$\mathbf{8 0}$	4.22×10^{11}	22.05

Hollow shafts			
Shaft diameter		ExI	Weight
Outer (mm)	Inner (mm)	$\left(\mathrm{N} \mathrm{x} \mathrm{mm}{ }^{2}\right)$	$(\mathrm{kg} / \mathrm{m})$
8	3.0	4.14×10^{7}	0.34
10	4.0	1.00×10^{8}	0.51
12	4.0	2.11×10^{8}	0.79
16	8.0	6.33×10^{8}	1.18
20	14.0	1.25×10^{9}	1.25
25	14.0	3.63×10^{9}	2.63
30	19.0	7.01×10^{9}	3.30
40	26.5	2.13×10^{10}	5.50
50	29.6	5.65×10^{10}	9.95
60	36.5	1.15×10^{11}	13.89
80	57.4	3.10×10^{11}	19.02

Calculation values:
Young's modulus $=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
Density $=\quad 7.8 \mathrm{~g} / \mathrm{cm}^{3}$

Shaft configuration tool

Shaft configuration tool in the Rexroth eShop

Rexroth offers an online product configuration tool for directly submitting product requests. Go to www.boschrexroth.com/shaft-configuration to quickly and easily configure specific solutions.
This online tool helps you visually configure
your desired shaft machining step by step. All catalog options are available.
Once configuration is complete, 2D and 3D data is available for download in all established formats.
Please send us a consulting request through the online tool for prices and delivery times.
The figures only show a small portion of our diverse machining options. Rexroth will machine shaft ends to suit your needs. Just send us your request!

Go to the "Shaft configuration tool" submenu in the eShop.

If you have the catalog, you can immediately enter the machining image number under the menu item "Machining to customer specification - Quick start".
If you do not have the catalog, you can choose from all possible shaft machining options step by step under the menu item "Machining to customer specification".

Precision steel shafts

Standard shaft machining

Solid shafts Machining by image number

Solid shafts

Machining by image number

058	059
Side 1: spigot, side 2: female thread	Side 1: male thread, side 2: female thread
060	
Side 1: male thread with spigot, side 2: female thread	
070	071
Pitch circle front thread on one end	Pitch circle front thread on both ends
072	073
Pitch circle front thread and female thread on one end	Pitch circle front thread and female thread on both ends
074	075
Side 1: pitch circle front thread, side 2: female thread	Side 1: pitch circle front thread, side 2: spigot and female thread
076	
Side 1: pitch circle front thread, side 2: male thread with spigot	
080	081
Push fit fitting	Threaded fitting
090	091
Annealed on one end	Annealed on both ends

This is only a small portion of our diverse machining options. Other machining options available upon request.

Precision steel shafts

Shaft machining

Hollow shafts
Machining by image number

Options

The standard shaft machining options shown above can be supplemented with the following options.

L-form wrench size	U-form wrench size
902 \square	
L-form plane	U-form plane
904	905
90° groove on one end	90° groove on both ends
906	907
DIN 471 groove on one end	DIN 471 groove on both ends
909	910
90° countersink on one end	90° countersink on both ends

This is only a small portion of our diverse machining options. Other machining options available upon request.

Benefits

- Diverse machining options
- Short delivery time
- Low cost

Tapped and untapped radial holes

Radial holes are necessary for supporting steel shafts. Radial holes are made in steel shafts that have already been hardened and polished.
Hole diameter, depth and spacing depend on the diameter of the shaft. The tables in Section "Steel shafts with ready-mounted shaft support rails" contain reference values.

Reference values for drilling out the hardened surface zone

Ordering

- Request with customer drawing or
- Use the shaft configuration tool
www.boschrexroth.com/shaft-configuration

Dimensions (mm)		
$\boldsymbol{\varnothing} \mathbf{d}$	\mathbf{d}_{1}	
$\mathbf{1 2}$	M 4	$\mathbf{t}_{\mathbf{2}}$
$\mathbf{1 6}$	M 5	2.5
$\mathbf{2 0}$	M 6	2.5
$\mathbf{2 5}$	M 8	3.0
$\mathbf{3 0}$	M 10	3.0
$\mathbf{4 0}$	M 10	3.5
$\mathbf{4 0}$	M 12	4.0

Dimensions (mm)		
$\boldsymbol{0} \mathbf{d}$	\boldsymbol{d}_{1}	
$\mathbf{5 0}$	M 12	$\mathbf{t}_{\mathbf{2}}$
$\mathbf{5 0}$	M 14	4.0
$\mathbf{5 0}$	M 16	4.5
$\mathbf{6 0}$	M 14	5.0
$\mathbf{6 0}$	M 20	5.5
$\mathbf{8 0}$	M 16	6.5
$\mathbf{8 0}$	M 24	5.5

Values for stainless steel shafts available upon request.

See Section "Steel shafts with ready-mounted shaft support rails" for matching shaft support rails.

S------- (f)----	(1----
-	
----6:--------	---0:-
'	-
()-----------	(---

Precision steel shafts

Shaft machining

DIN 6885-1 keyway

(Recommendation)

Dimensions (mm)		
Shaft		
$\boldsymbol{\sigma} \mathbf{~ d}$	\mathbf{b}_{2}	
$\mathbf{2 5}$	$\mathbf{P 9}$	\mathbf{t}
$\mathbf{3 0}$	8	$4.0^{+0.2}$
$\mathbf{4 0}$	8	$4.0^{+0.2}$
$\mathbf{5 0}$	12	$5.0^{+0.2}$
$\mathbf{6 0}$	14	$5.5^{+0.2}$
$\mathbf{8 0}$	18	$7.0^{+0.2}$

Groove for DIN 471 retaining ring

Recommended dimensions

Dimensions (mm)			DIN 471 retaining ring	
$\varnothing \mathrm{d}$	$\begin{array}{r} \mathrm{b}_{1} \\ +0.1 \end{array}$	d_{1}	Dimensions (mm)	Material number
4	0.50	3.8-0.04	4x0.4	R3410 76500
5	0.70	$4.8-0.04$	5×0.6	R3410 74200
8	0.90	7.6-0.06	8×0.8	R3410 73700
10	1.10	9.6-0.11	10x1	R3410 74500
12	1.10	11.5-0.11	12x1	R3410 71200
14	1.10	13.4-0.11	14x1	R3410 74700
16	1.10	15.2-0.11	16x1	R3410 71300
20	1.30	19-0.13	20x1.2	R3410 73500
25	1.30	23.9-0.21	25x1.2	R3410 75000
30	1.60	28.6-0.21	30x1.5	R3410 72400
40	1.85	37.5-0.25	40×1.75	R3410 72600
50	2.15	47.0-0.25	50x2	R3410 72700
60	2.15	57.0-0.30	60x2	R3410 76400
80	2.65	76.5-0.30	80×2.5	-

90° countersink

Recommended dimensions

Pitch circle female thread

Dimensions (mm)

$\boldsymbol{\theta} \mathbf{d}$	4	5	8	10	12	14	16	20	25	30	40	50	60	80
\mathbf{b}_{3}	-	3	4	5	5	5	5	5	6	6	8	8	8	10

Steel shafts with shaft support rails ready-mounted, shaft support rails

Product overview

Benefits

- For use with open linear bushings
- For long guides or heavy loads where self-supporting shafts cannot be used due to shaft warping
- Unlimited length when using interconnecting shafts
- Support rails for various requirements
- Additional degrees of freedom in circumferential direction compared to profiled rail systems
- For applications where other linear guides tend to warp due to imprecise substructures.

General

The individual supports are arranged under each shaft and separated only by installation seams. The tolerances specified in the dimension tables refer to after alignment and installation of the guide units on a torsion-resistant, faced mounting base.

R1010 Precision steel shaft with ready-mounted aluminum shaft support rails, flanged, highly affordable

R1011 Precision steel shaft with ready-mounted aluminum shaft support rails, flanged, highly affordable

R1014 Precision steel shaft with ready-mounted aluminum shaft support rails, flanged, extremely high height tolerance

R1025 same as R1010, but hole spacing for profile systems

Steel shafts with shaft support rails

R1015 Precision steel shaft with
ready-mounted aluminum shaft support rails, side mounting

R1013 Precision steel shaft with
ready-mounted aluminum shaft support rail, flangeless, highly affordable

R1016 Precision steel shaft with ready-mounted steel shaft support rail, flangeless, with reference edge

Shaft support rails for radial compact set and radial linear bushing:

R1018

R1012

Steel shafts with ready-mounted shaft support rails

Design, ordering information, installation

Terminals T_{1} and T_{2}

Excess and combined guide units

If the ordered shaft length corresponds to the whole multiple of the hole spacing of one shaft support rail, the terminals correspond to half of the spacing length (T_{1} and $T_{2}=T \div 2$). The holes are calculated by us for other lengths ($T_{1}=T_{2}$). This is done by shortening any excess shaft support rails on either end. Both terminals T_{1} and T_{2} should not be less than $0.2 \times \mathrm{T}$.
If no customer drawings are available, we will include the hole spacing calculated by us for the steel shaft in the quotation and order confirmation. This produces the locations of the mounting holes in the machine bed.
We recommend comparing these specifications with the design documents.
Ordering information: Material number R10.. /length $\times \mathrm{mm} / \mathrm{T}_{1} \times \mathrm{mm} / \mathrm{T}_{2} \times \mathrm{mm}$

A section of shaft with ready-mounted shaft support rail should not exceed 6 m . Individual sections are combined to form longer lengths (see Section "Combined shafts, connections").
The joints between shafts and shaft support rails are arranged differently depending on the model. However, the shaft joint should generally be offset from the shaft support rail seam.

Special hole spacing

Note on installing flangeless shaft support rails

Shafts with ready-mounted shaft support rails also come with special hole spacings upon the customer's request.

We recommend using a taper gib or clamping strip to secure the shaft support rail in order to make installation easier or when there is significant lateral load.

For R1013 (aluminum) and R1016 (steel)

The shaft support rail must be straight during installation.
To do this, press the first shaft with shaft support rail onto the reference edge and fasten it down, then align and fasten down the second shaft, preferably using a rod. These elements only come with precision steel shafts.
The maximum length of the shaft support rail is $1,800 \mathrm{~mm}$ and these are joined to create longer lengths. The reference edge allows the shaft support rails to be aligned easily to avoid distortive stress on the linear bushings.

Steel shafts with ready-mounted shaft support rails for open standard and super linear bushings

Flanged

R1010 steel shaft with

 ready-mounted shaft support rail
Material

- Shaft support rail: Aluminum

Design

- Combined with linear sets, these shaft support rails can be used to create linear guides with very low height.
- High rigidity Carefully adapting the support rail to the linear bushing size produces the ideal pressure angle for fitting the shaft, which ensures high rigidity along with the large fastening bolts.
- Highly affordable

Shaft \varnothing d (mm)	Material number Hole spacing type 1	Hole spacing type 2	Weight $(\mathrm{kg} / \mathrm{m})$
16	R1010 016 ..	R1010 516 ..	2.5
20	R1010 020 ..	R1010 520 ..	3.8
25	R1010 025 ..	R1010 525 ..	5.4
30	R1010 030 ..	R1010 530 ..	7.6
40	R1010 040 ..	R1010 540 ..	12.6
工		$\left\{\begin{array}{r}\text { Shaft } \\ -00= \\ -01= \\ -30= \\ -31= \\ -60= \\ -61=\end{array}\right.$	t-treated steel t-treated steel inless steel inless steel d chrome-plated heat-treate d chrome-plated heat-treate

Ordering example:

Shaft diameter 30 mm , h7, heat-treated steel, 900 mm long, ready-mounted shaft support rail type 1:
R1010 030 01/900 mm.

Dimensions

Dimensions (mm)

$\varnothing \mathrm{d}$	$\begin{gathered} \mathbf{H}^{1)} \\ \pm 0.1 \end{gathered}$	A	V	M	$\begin{aligned} & \mathrm{O}_{1} \\ & \text { DIN 6912-8.8 } \end{aligned}$	N	E	t	$\begin{aligned} & \mathrm{O}_{2}{ }^{2)} \\ & \text { DIN 6912-8.8 } \end{aligned}$	Type 1	$\left.\mathrm{Mt}^{3}\right)$ Type 2
16	26	45	5	7.0	M5x20	9	33	6.0	M5x16	100	150
20	32	52	6	8.3	M6x25	11	37	7.0	M6x16	100	150
25	36	57	6	10.8	M8x30	15	42	7.0	M6x16	120	200
30	42	69	7	11.0	M10x35	17	51	7.5	M8x25	150	200
40	50	73	8	15.0	M10x40	19	55	7.0	M8x25	200	300

1) Measured with gauging shaft, nominal dimension d and length about 50 mm . Up to $1,800 \mathrm{~mm}$ length with parallelism of 0.1 mm available upon request.
2) Only applicable for bolting with steel or cast iron threads.
3) Type 1: For transverse loads on the linear bushing opening and when approaching maximum load.

Type 2: For general requirements.

Steel shafts with ready-mounted shaft support rails for open standard and super linear bushings

For profile systems

R1025 steel shaft with readymounted shaft support rail ${ }^{1)}$

Material

- Shaft support rail:

Aluminum

Design

- Fast, easy, modular linear bushing guide design for profile systems
- Highly affordable due to less stringent height tolerance

Shaft	Modular dimension	Ma
$\boldsymbol{\sigma} \mathbf{~ d}$	E	
$(\mathrm{~mm})$	(mm)	
$\mathbf{2 0}$	40	R 102
$\mathbf{2 5}$	40	R 1
$\mathbf{3 0}$	45	R 1
$\mathbf{3 0}$	50	R 102

1) Ordering example:

Shaft diameter 25 mm , h7, heat-treated steel, 900 mm long, ready-mounted shaft support rail:
R1025 025 01/900 mm.

R1039 shaft support rail, drilled

R1039 shaft support rail,

 undrilled

Shaft \varnothing d (mm)	Material number	Weight $(\mathrm{kg} / \mathrm{m})$	Length $\begin{array}{r} (\mathrm{mm}) \\ -0.5 \\ -1.5 \end{array}$
20	R1039 52030	1.3	1,800
25	R1039 52530	1.6	1,800
30	R1039 53030	2.0	1,800

Dimensions

Dimensions (mm)										
$\boldsymbol{\theta} \mathrm{d}$	$\begin{gathered} H^{1)} \\ \pm 0.1 \end{gathered}$	A	V	M	O_{1} DIN 6912-8.8	N	Modular dimension	t	$\begin{aligned} & \mathrm{O}_{2} \\ & \text { DIN 6912-8.8 } \end{aligned}$	T
20	32	52	6	8.3	M6x25	11	40	7.0	M6	180
25	36	57	6	10.8	M8x30	15	40	7.0	M6	180
30	42	69	7	11.0	M10x35	17	45	7.5	M8	180
30	42	69	7	11.0	M10x35	17	50	7.5	M8	180

1) Measured with gauging shaft, nominal dimension d and length about 50 mm . Up to $1,800 \mathrm{~mm}$ length with parallelism of 0.1 mm available upon request.

See "Basic mechanical elements" catalog for profile systems.

Steel shafts with ready-mounted shaft support rails for open standard and super linear bushings

Flanged, extremely accurate height tolerance

R1014 steel shaft with ready-mounted shaft support rail

Material

- Shaft support rail: Aluminum

R1050 shaft support rails, drilled, length (mm) 600-0.5

R1050 shaft support rails, undrilled, length (mm) 600-0.1.5

Design

- Combined with linear sets, these shaft support rails can be used to create linear guides with very low height.
- High rigidity Carefully adapting the support rail to the linear bushing size produces the ideal pressure angle for fitting the shaft, which ensures high rigidity along with the large fastening bolts.

Shaft	Material number			Weight
$\begin{array}{r} \boldsymbol{\sigma} \mathbf{d} \\ (\mathrm{mm}) \end{array}$	Type 1	Type 2		(kg/m)
12	R1014 012 ..	R1014 512 ..		1.75
16	R1014 016 ..	R1014 516 ..		2.65
20	R1014 020 ..	R1014 520 ..		3.95
25	R1014 025	R1014 525 ..		5.6
30	R1014 030 ..	R1014 530 ..		7.9
40	R1014 040 ..	R1014 540 ..		12.8
50	R1014 050 ..	R1014 550 ..		19.4
60	R1014 060	-		27.3
80	R1014 080 ..	-		47.3
			Shafts: - $00=$ h6 heat-treated steel - $01=$ h7 heat-treated steel $-30=\mathrm{h} 6$ stainless steel - $31=\mathrm{h} 7$ stainless steel $-60=$ h6 hard chrome-plate $-61=$ h7 hard chrome-plate	reated steel reated steel

Ordering example:

Shaft diameter 30 mm , h6, heat-treated steel, $1,200 \mathrm{~mm}$ long, ready-mounted shaft support rail type 1 R1050 63000 is ordered as:
R1014 030 00/1,200 mm.

\begin{tabular}{|c|c|c|c|}
\hline Shaft $\boldsymbol{\sigma}$ d (mm) \& Material number Type 1 \& Type 2 \& Weight

$(\mathrm{kg} / \mathrm{m})$

\hline 12 \& R1050 61200 \& R1050 71200 \& 0.52

\hline 16 \& R1050 61600 \& R1050 71600 \& 0.64

\hline 20 \& R1050 62000 \& R1050 72000 \& 0.90

\hline 25 \& R1050 62500 \& R1050 72500 \& 1.08

\hline 30 \& R1050 63000 \& R1050 73000 \& 1.43

\hline 40 \& R1050 64000 \& R1050 74000 \& 1.81

\hline 50 \& R1050 65000 \& R1050 75000 \& 2.45

\hline 60 \& R1050 66000 \& - \& 3.16

\hline 80 \& R1050 68000 \& - \& 4.86

\hline
\end{tabular}

Shaft $\boldsymbol{\sigma} \mathbf{~ d}$ (mm)	Material number	Weight
$\mathbf{1 2}$	R105051200	$(\mathrm{kg} / \mathrm{m})$
$\mathbf{1 6}$	R 105051600	0.52
$\mathbf{2 0}$	R 105052000	0.64
$\mathbf{2 5}$	R 105052500	0.90
$\mathbf{3 0}$	R 105053000	1.08
$\mathbf{4 0}$	R 105054000	1.43
$\mathbf{5 0}$	R 105055000	1.81
$\mathbf{6 0}$	R 105056000	2.45
$\mathbf{8 0}$	R 105058000	3.16

Dimensions

Dimensions (mm)													Angle β (${ }^{\circ}$)
$\varnothing \mathrm{d}$	$\begin{array}{r} \mathbf{H}^{1} \\ \pm 0.01 \end{array}$	A	V	M	$\begin{aligned} & \mathrm{O}_{1} \\ & \text { DIN 6912-8.8 } \end{aligned}$	N	$\begin{array}{r} U_{1} \\ \text { DIN } 7980^{2)} \end{array}$	E	t	$\begin{aligned} & \mathrm{O}_{2}{ }^{3)} \\ & \text { DIN 6912-8.8 } \end{aligned}$	Type 1	$\begin{array}{r} \text { Mt }^{4)} \\ \text { Type } 2 \end{array}$	
12	22	40	5	5.8	M 4×20	8	4	29	4.5	M 4×12	75	120	50
16	26	45	5	7.0	M5x20	9	5	33	7.6	M5x16	100	150	50
20	32	52	6	8.3	M6x25	11	6	37	8.6	M6x16	100	150	50
25	36	57	6	10.8	M8x30	15	8	42	9.0	M6x16	120	200	50
30	42	69	7	11.0	M10x35	17	10	51	10.0	M8x25	150	200	50
40	50	73	8	15.0	M10x40	19	10	55	9.5	M8x25	200	300	50
50	60	84	9	19.0	M12x45	21	12	63	11.5	M10x30	200	300	46
60	68	94	10	25.0	M14x50	25	14	72	13.0	M10x30	300	-	46
80	86	116	12	34.0	M16x60	28	16	92	15.0	M12x35	300	-	46

1) Measured with gauging shaft, nominal dimension d and length about 50 mm .
2) DIN 7980 discontinued. Spring washer commercially available.
3) Only applicable for bolting with steel or cast iron threads.
4) Type 1: For transverse loads on the linear bushing opening and when approaching maximum load, as well as when dimensional accuracy is strictly required.
Type 2: For general requirements.

Steel shafts with ready-mounted shaft support rails for open standard and super linear bushings

R1011 steel shaft with

 ready-mounted shaft support rail
Material

- Shaft support rail: Aluminum

Shaft σ d (mm)	Material number		Weight	
	Type 1	Type 2		(kg/m)
12	R1011 012 ..	R1011 512 ..		1.95
16	R1011 016 ..	R1011 516 ..		2.80
20	R1011 020 ..	R1011 520 ..		4.10
25	R1011 025 ..	R1011 525 ..		5.90
30	R1011 030 ..	R1011 530 ..		8.50
40	R1011 040 ..	R1011 540 ..		13.3
50	R1011 050 ..	R1011 550 ..		20.30
	T	\square	afts: = h6 hea = h7 hea $=\mathrm{h} 6$ sta = h7 sta = h6 hard = h7 har	eated s eated

Ordering example:

Shaft diameter 40 mm , h7, stainless steel, $1,100 \mathrm{~mm}$ long, ready-mounted shaft support rail type 2 R1050 24000 is ordered as:
R1011 540 31/1,100 mm.

R1050 shaft support rails, undrilled, length (mm) 600-0.5

Shaft $\begin{gathered} \boldsymbol{\theta} \mathbf{d} \\ (\mathrm{mm}) \end{gathered}$	Material number Undrilled	Weight (kg)
12	R1050 01200	0.64
16	R1050 01600	0.74
20	R1050 02000	1.00
25	R1050 02500	1.20
30	R1050 03000	1.80
40	R1050 04000	2.10
50	R1050 05000	3.00

Dimensions

Dimensions (mm)

$\varnothing \mathrm{d}$	$\begin{array}{r} \mathbf{H}^{1)} \\ \pm 0.05 \end{array}$	A	V	M	M	$\begin{aligned} & \mathrm{O}_{1} \\ & \text { ISO 4762-8.8 } \end{aligned}$	$\begin{array}{r} \mathrm{U}_{1} \\ \mathrm{DIN} \\ 7980^{2} \end{array}$	N	E	t	$\begin{array}{\|l} \mathrm{O}_{2}{ }^{3)} \\ \text { ISO 4762-8.8 } \\ \text { or } \\ \text { ISO 4017-8.8 } \end{array}$	U_{2} DIN 125	$\left.\mathrm{Mt}^{4}\right)$ Type 1	Type 2
12	28	43	5	5.8	9	M 4×25	4	8	29	5.5	M4x12	4	75	120
16	30	48	5	7.0	10	M5x25	5	9	33	7.0	M5x16	5	100	150
20	38	56	6	8.3	11	M6x30	6	11	37	9.6	M6x16	6	100	150
25	42	60	6	10.8	14	M8x35	8	15	42	11.0	M6x16	6	120	200
30	53	74	8	11.0	14	M10x40	10	17	51	14.0	M8x25	8	150	200
40	60	78	8	15.0	18	M10x45	10	19	55	13.5	M8x25	8	200	300
50	75	90	10	19.0	22	M12x55	12	21	63	16.0	M10x30	10	200	300

1) Measured with gauging shaft, nominal dimension d and length about 50 mm .
2) DIN 7980 discontinued. Spring washer commercially available.
3) Only applicable for bolting with steel or cast iron threads.
4) Type 1: For transverse loads on the linear bushing opening and when approaching maximum load, as well as when dimensional accuracy is strictly required.
Type 2: For general requirements.

Steel shafts with ready-mounted shaft support rails for open standard and super linear bushings

Side mounting

R1015 steel shaft with ready-mounted shaft support rail

R1054 shaft support rails

Type 1

Material

- Shaft support rail: Aluminum

Shaft	Material number	Weight	Material number	Weight
$\boldsymbol{\sigma}$ (mm)		(kg)		
20	R1015 020 ..	4.1	R1054 12000	1.0
$\mathbf{2 5}$	R1015 025 ..	6	R1054 12500	1.3
30	R1015 030 ..	8.7	R1054 13000	1.9
40	R1015 040 ..	14.3	R1054 14000	2.7
50	R1015 050 ..	21.5	R1054 15000	3.7

Shafts:
$00=$ h6 heat-treated steel
$01=\mathrm{h} 7$ heat-treated steel
$-30=$ h6 stainless steel

- $31=$ h7 stainless steel
- $60=$ h 6 hard chrome-plated heat-treated steel
$-61=\mathrm{h} 7$ hard chrome-plated heat-treated steel

Type 2

Shaft $\varnothing \mathrm{d}$ (mm)	Material number	Weight (kg)	Material number	Weight (kg)
20	R1015 520 ..	4.3	R1054 22000	1.1
25	R1015 525 ..	6.3	R1054 22500	1.5
30	R1015 530 ..	9	R1054 23000	2.1
40	R1015 540 ..	14.8	R1054 24000	3.0
50	R1015 550 ..	22.3	R1054 25000	4.2

Shafts:	
-00	$=\mathrm{h} 6$ heat-treated steel
-01	$=\mathrm{h} 7$ heat-treated steel
-30	$=\mathrm{h} 6$ stainless steel
-31	$=\mathrm{h} 7$ stainless steel
-60	$=\mathrm{h} 6$ hard chrome-plated heat-treated steel
-61	$=\mathrm{h} 7$ hard chrome-plated heat-treated steel

Ordering example:

Shaft diameter 30 mm , h6, heat-treated steel, $1,200 \mathrm{~mm}$ long, ready-mounted shaft support rail type 1 R1054 13000 is ordered as:
R1015 030 00/1,200 mm.

Dimensions

Shaft support rail type 1

Dimensions (mm)

$\varnothing \mathrm{d}$	$\begin{gathered} \mathrm{H}_{1}{ }^{1} \\ \text { js6 } \end{gathered}$	$\begin{array}{r} \mathrm{H}^{1}{ }^{1} \\ \pm 0.012 \end{array}$	V	M	$\begin{array}{r} \mathrm{E}_{1} \\ \pm 0.15 \end{array}$	$\begin{array}{r} \mathrm{E}_{2} \\ \pm 0.15 \end{array}$	T	t_{1}	t_{2}	$\begin{gathered} \mathrm{V}_{1}{ }^{2} \\ \max . \end{gathered}$	$B^{2)}$	N	$\begin{array}{r} \mathrm{O}_{1} \\ \text { ISO 4762-8.8 } \end{array}$	$\begin{array}{r} \mathrm{O}_{2}{ }^{3} \\ \text { ISO 4762-8.8 } \end{array}$	DIN 79804)
20	52	7.5	15	8.3	8	22	37.5	8.5	8.5	4.0	30	11	M6x45	M6x16	6
25	62	10.0	20	10.8	10	26	37.5	15.0	11.0	5.5	36	15	M8x50	M8x20	8
30	72	12.5	25	11.0	12	30	50.0	15.3	13.5	7.0	42	17	M10x60	M10x25	10
40	88	15.0	30	15.0	12	38	50.0	19.0	16.0	8.5	50	21	M12x70	M12x30	12
50	105	17.5	35	19.0	15	45	50.0	24.0	18.5	9.0	60	25	M14x80	M14x35	14

Shaft support rail type 2

Dimensions (mm)														
$\boldsymbol{\theta} \mathrm{d}$	$\begin{gathered} H_{1}{ }^{1)} \\ \text { js6 } \end{gathered}$	$\begin{array}{r} \mathrm{H}_{2}{ }^{1)} \\ \pm 0.012 \end{array}$	V	M	$\begin{array}{r} \mathrm{E} \\ \pm 0.15 \end{array}$	T	t_{1}	t_{2}	$\begin{gathered} \mathrm{V}_{1}{ }^{2} \\ \text { max. } \end{gathered}$	$B^{2)}$	N	ISO 4762-8.8	$\text { ISO } 4762-8.8$	DIN 79804)
20	52	7.5	15	8.3	15	50	8.5	8.5	4.0	30	11	M6x45	M6x16	6
25	62	10.0	20	10.8	18	60	15.0	11.0	5.5	36	15	M8x50	M8x20	8
30	72	12.5	25	11.0	21	75	15.3	13.5	7.0	42	17	M10x60	M10x25	10
40	88	15.0	30	15.0	25	100	17.5	16.0	8.5	50	19	M10x70	M12x30	10
50	105	17.5	35	19.0	30	100	21.5	18.5	9.0	60	21	M12x80	M14x35	12

1) Measured with gauging shaft, nominal dimension d and length about 50 mm .
2) Recommended design: No reference edge on opposite side $\left(\mathrm{V}_{1}\right)$, align parallel over shafts.
3) Recommendation applies only for bolting in steel or cast iron threads.
4) DIN 7980 discontinued. Spring washer commercially available.

Steel shafts with ready-mounted shaft support rails for open standard and super linear bushings

Flangeless

R1013 steel shaft with

 ready-mounted shaft support rail
Material

- Shaft support rail: Aluminum

Design

- This shaft support rail helps create highly compact guides and is designed for when installing the steel shaft from underneath. Compared to conventional flanged versions (see figure), this element has extremely low height.
- Highly affordable

Shaft Ø d (mm)	Material number	Weight $(\mathrm{kg} / \mathrm{m})$
12	R1013 012 ..	1.1
16	R1013 016 ..	1.9
20	R1013 020 ..	3.0
25	R1013 025 ..	4.5
30	R1013 030 ..	6.3

Shafts:	
-00	$=\mathrm{h} 6$ heat-treated steel
-01	$=\mathrm{h} 7$ heat-treated steel
-30	$=\mathrm{h} 6$ stainless steel
-31	$=\mathrm{h} 7$ stainless steel
-60	$=\mathrm{h} 6$ hard chrome-plated heat-treated steel
-61	$=\mathrm{h} 7$ hard chrome-plated heat-treated steel

Ordering example:

Shaft diameter 25 mm , h7, heat-treated steel, $1,500 \mathrm{~mm}$ long, ready-mounted shaft support rail:
R1013 025 01/1500 mm.

Dimensions

Hole pattern:

Dimensions (mm)									
$\varnothing \mathrm{d}$	$\begin{array}{r} \mathbf{H}^{1)} \\ \pm 0.05 \end{array}$	A	A_{1}	V_{1}	T	S	N	M	ISO 4762-8.8
12	14.5	11	5.5	3	75	4.5	8	5.8	M4
16	18.0	14	7.0	3	75	5.5	9	7.0	M5
20	22.0	17	8.5	3	75	6.6	11	8.3	M6
25	26.0	21	10.5	3	75	9.0	15	10.8	M8
30	30.0	23	11.5	3	100	11.0	17	11.0	M10

1) Measured with gauging shaft, nominal dimension d and length about 50 mm . Up to $1,800 \mathrm{~mm}$ length with parallelism of $50 \mu \mathrm{~m}$ available upon request.

Steel shafts with ready-mounted shaft support rails for open standard and super linear bushings

Flangeless, with reference edge

R1016 steel shaft with ready-mounted shaft support rail

Material

- Shaft support rail: Steel

Design

- This steel support rail helps create highly compact guides and is designed for when installing the steel shaft from underneath. Compared to conventional flanged versions (see figure), this element has extremely low height.
- Reference edge makes aligning easier

Ordering example:

Shaft diameter 30 mm , h7, heat-treated steel, 900 mm long, ready-mounted shaft support rail:
R1016 030 01/900 mm.

Dimensions

Hole pattern:

Dimensions (mm)											Grading tolerances ($\mu \mathrm{m}$)		
	$\mathrm{H}^{1)}$	H_{1}	$\begin{array}{r} \text { A } \\ \pm 0.02 \end{array}$	$\begin{array}{r} \mathrm{A}_{1} \\ \pm 0.02 \end{array}$	V_{1}	T	S	N	M	O		h6 shaft	h7 shaft
$\varnothing \mathrm{d}$											H^{2}	$\mathrm{H}_{1}{ }^{\text {3 }}$	$\mathrm{H}_{1}{ }^{\text {3 }}$
16	18	26.0	14	7.0	3	75	5.5	9	7.0	M5	20	32	36
20	22	32.0	17	8.5	3	75	6.6	11	8.3	M6	20	33	38
25	26	38.5	21	10.5	3	75	9.0	15	10.8	M8	20	33	38
30	30	45.0	23	11.5	3	100	11.0	17	11.0	M10	20	33	38
40	39	59.0	30	15.0	4	100	13.5	21	15.0	M12	20	35	41
50	46	71.0	35	17.5	5	100	15.5	25	19.0	M14	20	35	41

1) Tolerance: $\pm 0.02 \mathrm{~mm}$; comes with a height grade of $20 \mu \mathrm{~m}$.
2) Measured with gauging shaft, nominal dimension d and length about 50 mm . Up to $1,800 \mathrm{~mm}$ length with parallelism of $10 \mu \mathrm{~m}$ available upon request.
3) Includes shaft tolerance (determined from statistics).

Shaft support blocks

Product overview

The benefits

- For easy installing and quick aligning
- Precise design with reference edge
- More affordable than in-house designs

Aluminum compact R1058

Aluminum R1057

Cast iron, steel R1055

Cast iron flange R1056

Shaft support blocks

Compact shaft block, R1058

Material

- Aluminum

Design

- Very low height fitting linear sets with compact linear bushings
- Topside clamping for better accessibility
- Better security thanks to clamping screw with larger thread diameter
- Thread for fastening from below
- Drill hole for fastening from above

Shaft	Material number	Weight
$\boldsymbol{\sigma} \mathbf{d}$	WBA-...C-FO	
(mm)		(kg)
$\mathbf{1 2}$	R1058 012 00	0.045
$\mathbf{1 6}$	R1058 016 00	0.065
$\mathbf{2 0}$	R1058 020 00	0.110
$\mathbf{2 5}$	R1058 025 00	0.170
$\mathbf{3 0}$	R1058 030 00	0.220
40	R1058 040 00	0.470
$\mathbf{5 0}$	R1058 050 00	0.820

Dimensions

Dimensi θd	$\begin{array}{r} \mathrm{mm}) \\ d \\ \mathrm{H} 8 \end{array}$	$\begin{array}{r} \mathbf{H}^{1)} \\ \pm 0.01 \end{array}$	H_{1}	A	B	$\begin{array}{r} E \\ \pm 0.15 \end{array}$	S ${ }^{2}$	S_{1}	N_{1}	N_{2}	H_{4}	SW	Tightening torque (Nm)
12	12	19	33	40	18	27	5.3	M6	16	13	11	2.5	3.8
16	16	22	38	45	20	32	5.3	M6	18	13	13	2.5	3.8
20	20	25	45	53	24	39	6.6	M8	22	18	15	3.0	6.6
25	25	31	54	62	28	44	8.4	M10	26	22	17	4.0	16.0
30	30	34	60	67	30	49	8.4	M10	29	22	19	4.0	16.0
40	40	42	76	87	40	66	10.5	M12	38	26	24	5.0	30.0
50	50	50	92	103	50	80	13.5	M16	46	34	30	6.0	52.0

1) In relation to nominal shaft dimension d
2) ISO 4762-8.8 fastening bolts

Explanation of sample short product name

WB	A	20	C	FO
Shaft support block	Aluminum	$\varnothing 20$	Compact series	Top securing

See page 236 for more information on short product names.
Note: Same version with side clamping available under R1058 7 ..

Shaft support blocks

Shaft support blocks, R1057

Material

- Aluminum

Design

- Rigid shaft mounting due to extrawide design
- Topside clamping for better accessibility
- Better security thanks to clamping screw with larger thread diameter
- Thread for fastening from below
- Drill hole for fastening from above

Shaft Ø d (mm)	Material number WBA-...-FO	$\begin{array}{ll}\text { Weight } & \\ & \\ & \text { (kg) }\end{array}$
10	R1057 01000	0.05
12	R1057 01200	0.06
16	R1057 01600	0.11
20	R1057 02000	0.18
25	R1057 02500	0.35
30	R1057 03000	0.48
40	R1057 04000	0.90
50	R1057 05000	1.50
60	R1057 06000	3.00

Dimensions

Dimensions (mm)															Tightening torque
$\varnothing \mathrm{d}$	$\begin{array}{r} d \\ \mathrm{H} 8 \end{array}$	$\begin{array}{r} \mathbf{H}^{1)} \\ \pm 0.01 \end{array}$	H_{1}	$\begin{array}{r} M^{1)} \\ \pm 0.01 \end{array}$	A	B	E	$\mathrm{S}^{2)}$	S_{1}	N_{1}	N_{2}	v	H_{4}	SW	
10	10	18	31	20.0	40	20	$27^{ \pm 0.15}$	5.3	M6	14.0	13	5.0	10	2.5	3.8
12	12	20	35	21.5	43	20	$30^{ \pm 0.15}$	5.3	M6	16.5	13	5.0	10	2.5	3.8
16	16	25	42	26.5	53	24	$38^{ \pm 0.15}$	6.6	M8	21.0	18	5.0	13	3.0	6.6
20	20	30	51	30.0	60	30	$42^{ \pm 0.15}$	8.4	M10	25.0	22	5.0	16	4.0	16.0
25	25	35	61	39.0	78	38	$56^{ \pm 0.15}$	10.5	M12	30.0	26	6.5	20	5.0	30.0
30	30	40	70	43.5	87	40	$64^{ \pm 0.15}$	10.5	M12	34.0	26	8.0	22	5.0	30.0
40	40	50	88	54.0	108	48	$82^{ \pm 0.15}$	13.5	M16	44.0	34	10.0	28	6.0	52.0
50	50	60	105	66.0	132	58	100 ± 0.20	17.5	M20	49.0	42	12.0	37	8.0	120.0
60	60	75	130	82.0	164	74	$124^{ \pm 0.20}$	22.0	M27	59.0	42	13.0	42	10.0	220.0

1) In relation to nominal shaft dimension $d \quad$ 2) ISO 4762-8.8 fastening bolts

Explanation of sample short product name

WB	A	$\mathbf{2 0}$	FO
Shaft support block	Aluminum	$\varnothing 20$	Top securing

See page 236 for more information on short product names.
Note: Same version with side clamping available under R1057 7 ..

Shaft support blocks

Shaft support blocks, R1055

Material

- Spheroidal graphite cast iron
- Steel

Design

- Side clamping

Shaft Ø d (mm)	Material number WBG-...	Weight (kg)
8	R1055 00800	0.04
12	R1055 01200	0.06
16	R1055 01600	0.12
20	R1055 02000	0.22
25	R1055 02500	0.37
30	R1055 03000	0.55
40	R1055 04000	0.97
50	R1055 05000	1.90
60	R1055 06000	3.60
80	R1055 08000	7.30

Dimensions

Dimensions (mm)										
$\theta \mathrm{d}$	$\begin{array}{r} d \\ \mathrm{H} 8 \end{array}$	$H^{1)}$	$\mathrm{H}_{1}{ }^{\text {2) }}$	A ${ }^{2}$	$\mathrm{A}_{1}{ }^{\text {2 }}$	$B^{2)}$	E	$S^{3)}$	\mathbf{V}^{2}	SW
8	8	$15^{ \pm 0.010}$	27	32	16	10	$25^{ \pm 0.15}$	4.5	5.0	2.5
12	12	$20^{ \pm 0.010}$	35	42	20	12	$32^{ \pm 0.15}$	5.5	5.5	3.0
16	16	$25^{ \pm 0.010}$	42	50	26	16	$40^{ \pm 0.15}$	5.5	6.5	3.0
20	20	$30^{ \pm 0.010}$	50	60	32	20	$45^{ \pm 0.15}$	5.5	8.0	3.0
25	25	$35^{ \pm 0.010}$	58	74	38	25	$60^{ \pm 0.15}$	6.6	9.0	4.0
30	30	$40^{ \pm 0.010}$	68	84	45	28	$68^{ \pm 0.20}$	9.0	10.0	5.0
40	40	$50^{ \pm 0.010}$	86	108	56	32	$86^{ \pm 0.20}$	11.0	12.0	6.0
50	50	$60^{ \pm 0.015}$	100	130	80	40	$108^{ \pm 0.20}$	11.0	14.0	6.0
60	60	$75^{ \pm 0.015}$	124	160	100	48	$132^{ \pm 0.25}$	13.5	15.0	8.0
80	80	$100^{ \pm 0.015}$	160	200	130	60	$170^{ \pm 0.50}$	17.5	22.0	10.0

1) In relation to nominal shaft dimension d
2) ISO 8062-3-DCTG 11 tolerance
3) ISO 4762-8.8 socket head cap bolts.

Explanation of sample short product name

WB	G	
Shaft support block	Spheroidal graphite cast iron	20

See page $\mathbf{2 3 6}$ for more information on short product names.

Shaft support blocks

Shaft support block, R1056 Flanged

Material

- Lamellar graphite cast iron

Design

- Compared to installing the shafts in customer-made bores, flanged shaft support blocks allow the shafts to be aligned and prevent the linear bushings from overloading due to shafts that are not parallel
- Side clamping screw

\begin{tabular}{|c|c|c|}
\hline Shaft \varnothing d (mm) \& Material number WBG-...F \& Weight

(kg)

\hline 12 \& R1056 01200 \& 0.15

\hline 16 \& R1056 01600 \& 0.21

\hline 20 \& R1056 02000 \& 0.28

\hline 25 \& R1056 02500 \& 0.41

\hline 30 \& R1056 03000 \& 0.75

\hline 40 \& R1056 04000 \& 1.65

\hline 50 \& R1056 05000 \& 2.60

\hline
\end{tabular}

Dimensions

Dimensions (mm)								
0 d	d	$B^{1)}$	L1)	D1)	E	S	V1)	SW
	H7					H13		
12	12	42	20	23.5	$30^{ \pm 0.12}$	5.5	12	3
16	16	50	20	27.5	$35^{ \pm 0.12}$	5.5	12	3
20	20	54	23	33.5	$38^{ \pm 0.15}$	6.6	14	4
25	25	60	25	42.0	$42^{ \pm 0.15}$	6.6	16	5
30	30	76	30	49.5	$54^{ \pm 0.25}$	9.0	19	6
40	40	96	40	65.0	$68^{ \pm 0.25}$	11.0	26	8
50	50	106	50	75.0	$75^{ \pm 0.25}$	11.0	36	8

1) ISO 8062-3-DCTG 9 tolerance

Explanation of sample short product name

WB	G	20	F
Shaft support block	Lamellar graphite cast iron	$\varnothing 20$	Flanged

See page $\mathbf{2 3 6}$ for more information on short product names.

Further information

Here you will find extensive information on products, eShop, training and services.

Product information:

http://www.boschrexroth.com/en/xc/products/product-groups/linear-motion-technology/index

eShop:

http://www.boschrexroth.com/eshop

Training:
http://www.boschrexroth.com/training

Service:

http://www.boschrexroth.com/service

Notes

```
Bosch Rexroth AG
Ernst-Sachs-Straße 100
97424 Schweinfurt, Deutschland
Phone +499721 937-0
Fax +499721 937-275
www.boschrexroth.com
```

Find your local contact here:
www.boschrexroth.com/contact

