BNS - wide, normal, standard height

E.g.:

Ball runner block made of steel R1671 ... 2. **Dynamic characteristics** Travel speed: $v_{max} = 5 \text{ m/s}$ Acceleration: $a_{max} = 500 \text{ m/s}^2$ $(If F_{comb} > 2.8 \cdot F_{pr} : a_{max} = 50 \text{ m/s}^2)$ Note on lubrication: Pre-lubricated

- Further ball runner blocks BNS
- Corrosion resistant ball runner blocks see below

Order example

Options:

- Ball runner blocks BNS
- Sizes 25/70
- Preload class C1
- Accuracy class H ►
- With standard seal, ► without ball chain Material number: R1671 213 20

-										
	Ball runner blocks with size	Preload	class	Accurac	y class		Seals on without chain	ner blocks with ball c		
		CO	C1	N	н	Р	SS	DS	SS	
20/401)	R1671 5	9		4	3	-	20	-	22	
			1	4	3	2	20	2Z	22	
25/70	R1671 2	9		4	3	_	20	_	22	

1

4

3

3

20

20

27

Ball runner block, Resist CR R1671 ... 7.

Note on lubrication:

Pre-lubricated

Order example

Options:

- Ball runner blocks BNS
- Sizes 25/70
- Preload class C0
- Accuracy class H

With standard seal, without ball chain Material number: R1671 293 70

Options and material numbers

Options and material numbers

R1671 2

Size	Ball runner blocks with size	Preload class	Accuracy class	Seals on without chain		with ball	
		CO	н	SS	DS	SS	DS
20/401)	R1671 5	9	3	70	7Z	72	7Y
25/70	R1671 2	9	3	70	7Z	72	7Y
E.g.:	R1671 2	9	3	70			

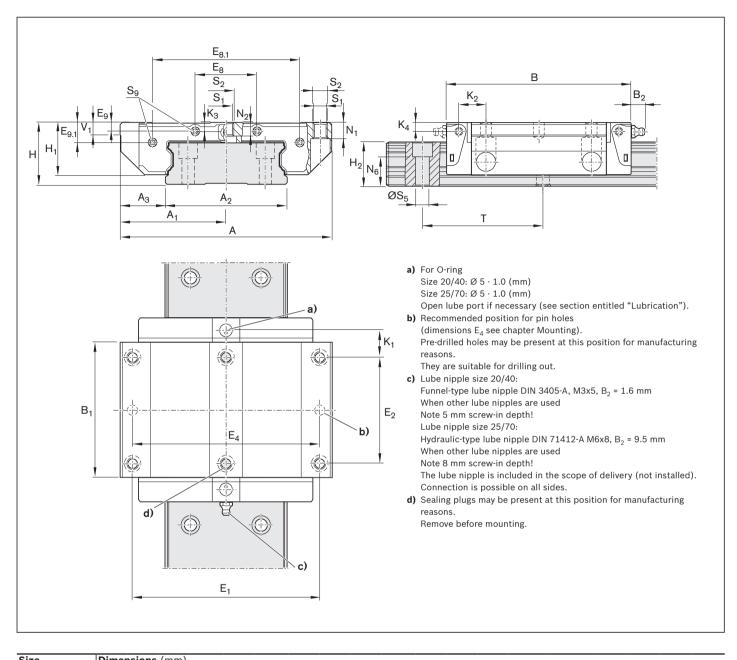
1) Caution: Ball runner blocks, not combinable with ball guide rail R167.8...!

Preload classes

C0 = Without preload (clearance) C1 = Moderate preload

Seals SS = Standard seal DS = Double-lip seal Key

gray numbers No preferred variant / combination (partially longer delivery times)


ball chain

DS

2Y

22

22

Size	Dimens	sions (mm)																
	Α	A_1	A_2	A ₃	В	B ₁	E ₁	E ₂	E ₈	E _{8.1}	E9	E _{9.1}	н	H1	H ₂	K ₁	K ₂	K ₃	K ₄
20/40	80	40	42	19.0	73	51.3	70	40	18	53.4	3.4	8.1	27	22.50	18.30	10.6	11.0	3.5	3.5
25/70	120	60	69	25.5	105	76.5	107	60	35	83.5	4.9	11.3	35	29.75	23.55	15.4	15.5	5.2	5.2

Size	Dimer	nsions	(mm)							Mass	Load capa	cities ¹⁾	Load moments ¹⁾ (Nm)				
										(kg)	(N)						
											↓ ↓·	t			\frown	$\overline{}$	
											→□	ן ←		J			
	N ₁	N_2	$N_{6}^{\pm 0.5}$	S1	S_2	S_5	S ₉	т	V ₁		с	C ₀	M _t	M _{t0}	ML	MLO	
20/40	7.70	3.70	12.5	5.3	M6	4.4	M2.5x1.5 ⁺³	60	6.0	0.4	14900	20600	340	470	140	190	
25/70	9.35	7.05	14.4	6.7	M8	7.0	M3x2 ^{+4.5}	80	7.5	1.2	36200	50200	1 350	1870	490	680	

1) Load ratings and load moments for ball runner block without ball chain. Load ratings and load moments for ball runner block with ball chain @ 14

Determination of the dynamic load capacities and load moments is based on a stroke travel of 100,000 m according to DIN ISO 14728-1. Often only 50,000 m are actually stipulated. For comparison: Multiply the values C, M, and M, by 1.26 according to the table.